During the last two years, a team of researchers and technicians from BIOS have worked diligently alongside crew of the BIOS-operated research vessel Atlantic Explorer to maintain near-continued operations throughout the pandemic.
Out to Catch a Spring “Bloom”
April 13, 2017
Each spring, when daffodils and other flowers emerge in gardens, tiny ocean plants called phytoplankton also undergo a surge of production and rapid growth near the surface of the Sargasso Sea. Although each marine phytoplankton is small—tinier than the period at the end of this sentence—it carries tremendous responsibilities.
BIOS-SCOPE Funding Renewed
November 30, 2020
After five years, with more than 25 papers in peer-reviewed scientific journals, six dedicated research cruises, and more than 45 presentations at national and international meetings, the BIOS-SCOPE (Bermuda Institute of Ocean Sciences – Simons Collaboration on Ocean Processes and Ecology) program has received five years of additional funding from the Simons Foundation International to continue its study of the microbial oceanography of the Sargasso Sea.
‘A Fantastic Boost for My Career’
November 29, 2020
Naomi Villiot knew the path to research abroad during a global health crisis wouldn’t be easy or simple. However, “after a great deal of paperwork, navigating canceled flights, virus testing, and isolation for days upon arrival in Bermuda in September, I have been able to continue with my research,” said Villiot, who hails from a small island in France and studies at a British university.
Tracing a Water Journey
October 14, 2017
In the Southern Ocean, cold surface water sinks to about 1,500 feet (500 meters) and travels in the dark for thousands of miles before resurfacing, some 40 years later, near the equator in the Pacific, Atlantic, and Indian ocean basins. Scientists call this major water mass the Sub-Antarctic Mode Water, or SAMW, and it is regarded as a powerhouse of a mixer in the oceans. It’s also critical to marine life; when it warms and rises into the sunlit subtropical and tropical waters, the nutrients it contains are estimated to fuel up to 75 percent of the microscopic plants growing there.
A Showcase for Innovative BATS Research
February 04, 2016
To maintain the unparalleled 27-year record of natural ocean processes and human-induced change at the Bermuda Atlantic Time-series Study (BATS) site, four BIOS research technicians work to collect monthly measurements at sea, process samples in the lab, and analyze incoming data. Over the past year, each of them has also gone beyond their basic duties with research forays into the time-series dataset. This month, the four traveled to New Orleans, Louisiana, to present their results at the 2016 Ocean Sciences Meeting.
A BIOS Treasure: The Tudor Hill Marine Atmospheric Observatory
January 30, 2022
Perched near the shoreline on the southwest coast of Bermuda, the Tudor Hill Marine Atmospheric Observatory is one of BIOS’s lesser-known gems, and the source for data used in two scientific papers published last year in leading scientific journals. The publications – Atmospheric Chemistry and Physics and the Journal of Geophysical Research: Atmospheres – feature collaborations among multiple researchers in the U.S., Germany, and Bermuda, including BIOS environmental chemist and Tudor Hill observatory lead scientist Andrew Peters.
BIOS Scientists Set to Participate in International Research Expedition to the Arctic
November 30, 2021
Not many people willingly sign up for a multi-week research cruise in freezing temperatures where fresh produce typically runs out after the second week at sea. But BIOS research specialist Becky Garley is excited at the prospect of returning to the Arctic for the third time next September 2022 as part of the Synoptic Arctic Survey (SAS).
BATS, Big Data, and the Base of the Marine Food Web
November 29, 2021
In mid-November, the BIOS-operated research vessel Atlantic Explorer headed into the Sargasso Sea for the eighth research cruise as part of the multi-year, multi-institutional BIOS-SCOPE (Bermuda Institute of Ocean Sciences – Simons Collaboration on Ocean Processes and Ecology) project. Since 2015, scientists from Bermuda, Germany, the United Kingdom, and the United States have converged at BIOS to investigate the microbial ecology of the Sargasso Sea and understand how organic matter (carbon) cycles within the marine environment.
New Study Links Global Ocean Processes with Local Coral Reef Chemistry
November 27, 2015
Five years of data collected on reefs and offshore in Bermuda shows that coral reef chemistry – and perhaps the future success of corals – is tied not only to the human carbon emissions causing systematic ocean acidification, but also to seasonal and decadal cycles in the open waters of the Atlantic, and the balance of biochemical processes in the coral reef community.