Zooplankton Mediation of Particle Formation in the Sargasso Sea

The oceanic biological carbon pump refers to the export of dissolved and particulate organic carbon to the deep ocean, and it is a significant driver of atmospheric carbon uptake by the oceans. Evidence from long-term research carried out at the Bermuda Atlantic Time-series Study (BATS) site suggests that the spectrum of particles collected by gel-traps below the euphotic zone changes drastically below 150 m, which is attributed to resident populations of zooplankton that feed on vertically migrating zooplankton as well as sinking particles. The goals of this study are to investigate the role of different zooplankton taxa on both particle aggregate formation and in particle transformation, and to compare and characterize the particles generated by the zooplankton communities with those collected by particle traps. The investigators are combining field collections with experiments onboard ship and in environmental chambers. They are collecting samples over two years, with three cruises a year to capture distinct seasons. They are assessing high-resolution vertical distribution of zooplankton in the upper 600 m using Multiple Opening-Closing Net and Environmental Sensing System (MOCNESS) tows during day- and night-time, to distinguish diel vertical migrators from resident populations and to quantify contributions to particulate organic carbon flux via fecal pellet production. On each cruise, sinking particles are being collected using gel trap tubes attached to the particle traps deployed monthly at BATS. In addition, roller tank experiments are determining how individual zooplankton mediate aggregate formation. Particle types and fecal pellets are being characterized using image analysis and DNA-based analysis of microbial communities. Finally, ongoing data collection from the long-term BATS program is providing invaluable environmental context and will ensure results from this study contribute to ongoing community efforts to observe and predict the fate of carbon in our global system.

Project Contact

Dr. Leocadio Blanco-Bercial
Associate Scientist
Leocadio@bios.edu
Tel: 441-297-1880 x116

 

Dr. Amy Maas
Associate Scientist
Amy.Maas@bios.edu

 

Kaitlin Noyes
Director of Education and Community Engagement
Kaitlin.Noyes@bios.edu