Letter from the President

One year ago, we joined Arizona State University (ASU) as part of the Julie Ann Wrigley Global Futures Laboratory.

This exciting affiliation with ASU opened up expanded research initiatives, education engagements, and shared global goals. A year later we celebrate this new association and look to a future of partnering for innovation.

School of Ocean Futures

BIOS operates as a vital unit of ASU, working with partners in an innovative collaboration that combines our efforts in Arizona, Hawai‘i and Bermuda, bridging research and education across the Atlantic and Pacific oceans in the School of Ocean Futures.

Our goal is to produce research of public value and to work with the public to address critical local and global environment issues and to develop best practices for marine conservation and ocean health.

For our research, we operate major facilities that are integral to monitoring both ocean ecosystems: The R/V Atlantic Explorer in Bermuda and the Airborne Observatory in Hawai‘i, at ASU’s Center for Global Discovery and Conservation Science. We continue to build on the planet’s longest set of ocean observations, anchoring a unique part of a global ocean-observing system that monitors the real-time physical state of the Atlantic Ocean. And we continue to seek better understanding of what affects the health of the ocean ecosystem.

For serving our communities, we have begun to work as closely aligned teams to engage the public, creating new management practices, and working to invent new technologies that will ensure that the future planet supports vibrant, biodiverse and sustaining ocean ecosystems.

Addressing real-world issues with direct human benefits and merging research results with societal issues; BIOS represents the future of oceanographic research innovation, advancing understanding of the ocean’s importance to the planet’s overall health.

Education programs

ASU, one of the largest and most innovative universities in the U.S., is committed to re-imagining education at all levels. We are dedicated to on-island teaching, education and research, and opportunities are expected to grow—meeting the needs of Bermuda’s teachers and students as well as providing new opportunities for international students.

The past year has seen an exchange of researchers and faculty between our two institutions as we implement this affiliation. ASU scientists have visited us to participate in ongoing research investigations and our scientists have traveled to ASU to experience the breadth of the Global Futures Laboratory first-hand. Our faculty have begun teaching online courses for ASU students and our education programs have leveraged the expertise of ASU engineers and scientists, introducing students to emerging technologies on the leading edge of ocean science.

William B. Curry
President & CEO
With respect to both specific projects and the broader framework that supports our research, the themes of adaptation and resilience permeated BIOS’s work in 2022. Whether researchers were investigating the ocean’s role in climate science and overall planetary health, or officials and staff were navigating components of a dynamic new affiliation with ASU, being resilient and capable of adapting well to shifting conditions were hallmarks of the past year.

As we marked the first full year of BIOS’s official alliance with ASU, faculty and students conducted research that advances the scientific community’s understanding of how marine chemical and biological systems are affected by changing environmental conditions, as well as how they may be able to adapt and mitigate various stresses.

Ocean warming, coral resilience
Leveraging assets such as Hydrostation “S” and Bermuda Atlantic Time-series Study (BATS) and the Julie Ann Wrigley Global Futures Laboratory, researchers studied relationships among microbial communities, marine nutrient cycles, and ecosystem functioning, and as well as investigating the health and resilience of coral reefs both nearby and distant from Bermuda.

For corals, field work began in August 2022 on a Heising-Simons Foundation International-supported project investigating what natural capacity corals have for responding to marine heatwaves – defined as regional events of five or more days of water temperatures above the 90th percentile for an area’s historical conditions. Depending on their duration and severity, these short-term, acute events can cause deterioration of relationships between corals and their symbiotic algae, resulting in coral bleaching.

Involving reef-building corals in the Atlantic, Caribbean and Pacific, the project includes researchers from three international scientific and education institutions: marine ecologists Samantha de Putron and Yvonne Sawall, and adjunct faculty member Gretchen Goodbody-Gringley of the Central Caribbean Marine Institute, and ecophysiologist Hollie Putnam of the University of Rhode Island. With ocean temperatures rising, researchers say the project could provide clues regarding human interventions that can enhance corals’ tolerance to heat. Specifically, the three-year project aims to determine if subjecting corals to thermal “stress conditioning” could yield potential benefits and, if so, build cellular and molecular profiles of more stress-tolerant corals.

Climate change in Bermuda
Assessing marine organisms’ resilience to the impacts of a warming climate and investigating possible adaptation strategies was the focus of two new endeavors during the first half of 2022, beginning with a climate change initiative undertaken in partnership with the financial services group HSBC. Led by Dr. Mark Guishard, adjunct faculty and director of the Bermuda Institute of Ocean Sciences Annual Report 2022

The project is compiling scientific observations and data into a two-part report highlighting critical climate risks facing Bermuda. The goal is to increase public understanding of the risks in support of building resilience.

Compiled with the help of two interns, Caroline Alexander and Kendall O’Farrell, and released in July 2022, Climate Change and Bermuda – Part I: Science and Physical Hazards synthesizes current knowledge and understanding about Bermuda’s climate, including historical trends and variations over the last several decades that will likely affect Bermuda’s people, institutions and culture. In addition to documenting the warming of local upper ocean and surface air temperatures, Part I of the report presents scientific analyses and projections indicating continued acceleration of sea level rise and hurricane risk in Bermuda. Part II will explore the societal impacts of climate change locally.

In the same vein, BIOS executives, scientists and staff took part in May in the first Bermuda Climate Summit, organized by the Bermuda Business Development Agency in partnership with the Association of Bermuda Insurers and Reinsurers and Kroll Bond Rating Agency, LLC (KRBA). Drawing about 150 attendees, including over 70 overseas visitors, the two-day summit gathered business, science and public policy leaders to explore solutions and opportunities for addressing climate risk protection.

A panel on climate science and technologies featured remarks by CEO and President William Curry, along with ASU Vice President Peter Scholosser. Summit attendees also heard from ASU President Dr. Michael M. Crow, who highlighted the partnership between BIOS and his university. Other members of the community participated as session leaders and participants staffed an exhibit booth and led a post-conference tour of the Institute’s grounds and research spaces.

Like many large climate meetings, the summit took a broad view of the climate challenge, covering the general science of climate change, as well as related regulatory, business and public policy issues. Meanwhile, 2022 saw scientists continue to delve
deeply – literally and figuratively – into the intricacies of climate change impacts on marine environments and adaptations that may occur.

Carbon cycle
Faculty members Nicholas Bates and Rod Johnson and adjunct faculty member Mike Lomas of the Bigelow Laboratory for Ocean Sciences were among authors of a pioneering study revealing how microscopic ocean life that drives the carbon cycle in the Atlantic Ocean is adapting to warmer conditions. Published in *Nature Communications* in March 2022, the study found that microscopic organisms that regulate carbon can maintain these vital, life-sustaining processes despite the stress of warmer water associated with climate change.

Based on 30 years of Sargasso Sea data, the study suggests that the surface ocean may adapt better to climate change than current scientific models take into account, providing insights into how ocean ecosystems respond to climate change.

Research into another major influence on the global carbon cycle, known as "the particle flux", continued in 2022 thanks to a three-year grant awarded by the U.S. National Science Foundation Chemical Oceanography program in late 2021. One of the world's longest-running time-series, the Oceanic Flux Program (OFP) has been collecting particle debris at depths up to 10,500 feet (3,200 meters) in the Sargasso Sea since 1978. Comprising a mix of sinking organic and skeletal remains of plankton, as well as microscopic minerals, particle flux deep in the ocean is closely linked to interactions between climate and the ocean's biology, physics and chemistry. Twice in 2022, the OFP team retrieved flux samples that increase our understanding of the ocean's sensitivity to a changing climate.

Molecular biology
Also investigating properties of the ocean's smallest organisms - but in pursuit of an entirely different type of resilience - is a study led by molecular biologist Julius Christopher Barsi into the use of marine bacteria to improve medical imaging outcomes for the millions of people who receive Magnetic Resonance Imaging (MRI) each year. Underway in 2022 and still ongoing, Barsi's research has the potential to transform the field of medical imaging.
To enable doctors and technicians to clearly see internal body structures, particularly tumors, about a third of all MRI cases involve the use of a contrast agent requiring gadolinium, an element that is retained in chemotherapy patients’ bodies and itself causes further damage. Barsi’s research is studying the potential of microscopic organelles called gas vesicles within cyanobacteria (blue-green algae), which possess physical properties that can be harnessed for non-invasive imaging. The process envisioned would administer the mRNA of a gas vesicles encoded with a small protein that can be directly visualized with ultrasound and serve as a safe alternative to existing MRI contrast agents. When imaging is complete, vesicles could be collapsed and removed from a patient’s body. This research will be advanced through Sargasso Sea surveys to discover which organisms have the desired characteristics.

While adapting to the scientific and administrative collaborations enabled by our new affiliation with ASU, in 2022 we continued longstanding studies into the health of marine ecosystems and their roles in supporting the global environment. At the same time, we undertook novel research to expand knowledge and understanding of ways in which marine systems are affected by environmental change, as well as resilient and adaptive to it.

Studying the ocean and its changes is humanity’s best lens into the pace and impacts of global climate change, helping to inform solutions. With recent data indicating these changes are happening faster and more acutely than previously understood, the research, collaborations, and educational endeavors carried out by staff, with support from our forward-thinking funders and partners, is more crucial and urgent than ever before.
At the heart of all fields of scientific research is the pursuit of progress. The commitment of our researchers to the pursuit of scientific progress is mirrored by their commitment to advance the skill set of the next generation of scientists. Our education activities span the breadth of our research, and deliver a suite of experiential training opportunities designed to bolster student understanding of the oceanic environment.

Bermuda Program
Each year more than 1,000 students, ranging from local K-12 pupils through to international graduates, visit BIOS where they gain an advanced set of key skills outside the traditional classroom setting. The Bermuda Program, one training opportunity, offers a unique opportunity for Bermudian students to broaden their knowledge of marine and atmospheric sciences and learn about the daily operations of an active research station while advancing their career prospects.

Operating since 1976, the Bermuda Program has provided almost 300 internship opportunities to young Bermudians, aged 18 and older, with many applying their summer experiences toward further university studies. Beyond that, some Bermuda Program graduates have successfully translated their summer internships into employment opportunities at BIOS and other related organizations in Bermuda. One such student is Jessica Godfrey.

Growing up in Bermuda Godfrey developed a fascination with the local corals and other sea life. In 2018, Godfrey was accepted into the Bermuda Program where she worked to count coral larval release for research on coral condition and reproduction. Eager to explore other topics in marine science, she participated the following year in the Institute’s Marine Plankton Ecology summer course instructed by zooplankton ecologists and faculty members Drs. Leocadio Blanco-Bercial and Amy Maas.

She returned to the Bermuda Program in 2020 where she teamed up with Maas to investigate zooplankton found at the Bermuda Atlantic Time-series Study (BATS) site. BATS is one of the longest ocean observing time-series programs in the world, and has collected data on the physi-
Kwe’Shon Woods-Hollis, like many Bermudian students, first discovered BIOS during an elementary school field trip. He has described BIOS as “the gateway that shaped my future” after taking part in a number of our education programs. In 2014 and 2015 Woods-Hollis took part in the Bermuda Program where he received hands-on training, in the classroom and the field, both on and under the ocean. His participation in the program sparked a passion for the ocean which continues to this day.

As a marine systems graduate of The Landing School in Arundel, Maine (U.S.), and a PADI Master SCUBA Diver Trainer, Woods-Hollis is ideally positioned to share his enthusiasm for the marine environment as BIOS’s small boats and dock supervisor. Through his role Woods-Hollis supports both research and education activities, piloting our small boats to areas of scientific interest for researchers to investigate in addition to ensuring safe passage for groups of interns, summer course students, and local learners as they explore Bermuda’s marine environment.

A fellow Bermuda Program alum is Claire Fox who was born in Bermuda and has spent her life on the island, other than taking time to attend universities for environmental science studies in Canada and Wales. Her experience at BIOS started in 2010, during the first of two summers spent attending the Bermuda Program. In the Institute's Phytoplankton Ecology Lab she worked with marine biogeochemist Michael Lomas, now at the Bigelow Laboratory for Ocean Sciences in Maine (U.S.). Her time in the lab, and conducting field work on board the BIOS-operated research vessel Atlantic Explorer, helped her to forge the skill set required to pursue a career in environmental education.

Following her training at BIOS Fox worked for a...
By sharing our world-class scientific research and environmental activities Fox successfully connects local people to their blue backyard through STEM fields. “My most rewarding moments are when I connect with students and show them that science is actually really fun and exciting,” Fox said.

For decades our educational offerings, such as the Bermuda Program, have served as a solid foundation for future career progression for local and international students. Moving forward as part of Arizona State University’s Julie Ann Wrigley Global Futures Laboratory (GFL), BIOS will continue to leverage cutting-edge research to progress the education of learners from around the globe. GFL serves as the cornerstone of ASU’s commitment to sustainability and shaping a thriving tomorrow for all of Earth’s inhabitants, a goal which requires the nexus between research and education to continue to progress.
Financial Summary

Fiscal Year 2022 was the inaugural year BIOS has been part of Arizona State University’s (ASU) Julie Ann Wrigley Global Futures Laboratory. Integration efforts focused on ASU and BIOS leadership developing pathways for full integration into the ASU Public Enterprise and exploring new possibilities to a shared vision. Furthering the mission, creating opportunities, and developing connections became the shared strategy for integrating the two entities to expand research and academic activities.

Significant milestones included BIOS faculty accepting tenure-track professorship positions within the School of Ocean Futures (SOF) and School of Earth and Space Exploration (SESE). The SOF was established in mid-2022 with the goal of advancement of learning, discovery and partnerships to shape a thriving global future. BIOS, a critical component, will serve as a strategic center of the SOF and provides to SOF a rich history of research and learning presence in the Atlantic Ocean with more than 120 years of excellence in ocean and atmospheric research.

FY 2022 financial developments and highlights include:

- BIOS successful transition to conformity to GASB accounting standards as due to its affiliation with ASU.

- Cash and investments decreased by approximately $1.1M due to liquidation of the credit facility and a reduction in significant receivables at year end. $5.5M in debt principal was repaid during FY 2022, leaving one debt instrument totaling $0.8M with a major local utility.

- BIOS ended FY 2022 with a decrease in net position of $1.6M primarily due to unrealized losses from endowment investments owing to poor market performances. Net investment losses were approximately $3.0M.

- Operating revenues increased by $2.2M with the most significant increase due to a significant grant-funded shipyard for the research vessel. Tuition and auxiliary revenues increased due to the addition of an additional summer course and return to in-person learning.

- Operating expenses increased by $2.6M with the largest driver corresponding to the R/V Atlantic Explorer’s shipyard expenditures. Instruction and plant costs increased due to resumption of post-pandemic operations.

The FY 2023 economic outlook incorporates advancement of the integration plan by achieving synergies through collaboration and teamwork. Persistent challenges to full integration of ASU and BIOS related to differences in legal frameworks and cultures continue to arise, however significant progress has been made to address legal and regulatory concerns regarding full employment of Bermuda-based BIOS staff as ASU employees. Expanded research programs for the SOF are currently underway and include the BIOS facility as key participants.

We remain driven by our shared purpose with ASU and the SOF and thank our committed board, dedicated management team, faculty and operational teams who energize the institution. Our generous donors and collaborative teams have the ASU affiliation well-positioned for continued success.

Victoria Millett
CPA, Treasurer, and Controller
Summary Financial Highlights

2022 REVENUES & SUPPORT
Operating revenue is derived from research grants and contracts (59%), tuition and fees (2%), and auxiliary enterprises (3%). All other sources of revenue are considered as nonoperating revenues.

- Research Grants and Contracts (59%) $11,470,578
- Tuition and Fees (2%) $457,024
- Auxiliary Enterprises (3%) $490,828
- Contributions (13%) $2,541,071
- Affiliation and Services Revenues (23%) $4,381,514

2022 EXPENSES
Operating expenses include research (50%), instruction (5%), institutional support (13%), operation and maintenance of plant (4%), auxiliary enterprises (1%), academic support (2%), and depreciation (10%). All other expenses are considered nonoperating.

- Instruction (5%) $976,162
- Research (50%) $10,594,041
- Institutional Support (13%) $2,755,077
- Operation and Maintenance of Plant (4%) $753,913
- Auxiliary Enterprises (1%) $176,461
- Academic Support (2%) $403,393
- Depreciation (10%) $2,079,731
- Interest on Debt (1%) $279,381
- Investment and Other Loss (14%) $2,980,180
Summary Financial Highlights

Assets
- **Current assets**: $7,350,392, $8,436,524
- **Noncurrent assets**: 18,643,129, 24,536,123
- **Capital assets, net**: 15,031,504, 15,171,949

Total Assets
- **Total**: 41,025,025, 48,144,596

Liabilities
- **Current liabilities**: 1,627,313, 7,027,399
- **Noncurrent long-term obligations**: 807,287, 869,445

Total Liabilities
- **Total**: 2,434,600, 7,896,844

Net Position
- **Net Investment in capital assets**: 14,162,060, 8,812,736
- **Restricted**:
 - **Nonexpendable**: 10,194,641, 10,169,141
 - **Expendable**: 14,481,920, 18,538,978
 - **Unrestricted**: (248,196), 2,726,897

Total Net Position
- **Total**: $38,590,425, $40,247,752

Operating Revenues
- **Research grants and contracts**: $11,470,578, $9,401,465
- **Tuition and fees**: 457,024, 317,481
- **Auxiliary enterprises**: 490,828, 463,478

Total operating revenues
- **Total**: 12,418,430, 10,182,424

Operating Expenses
- **Operating Loss**: (5,320,348), (4,940,471)

Total non operating revenues
- **Total**: 6,922,585, 7,020,380

Total non operating expenses
- **Total**: (3,259,565), (508,621)

Total
- **Total**: 3,663,021, 6,511,759

Net Position
- **Net position at beginning of the year**: 40,247,752, 38,676,464
- **Net position at end of the year**: $38,590,425, $40,247,752
Board of Trustees

Officers
President and CEO
William B. Curry, PhD

Chief Financial and Operating Officer
William Welton

Treasurer and Controller
Victoria Millett, CPA

Secretary
Gillian M.S. Hollis

Board Chairs
Mr. Stephen H. Weinstein
Chair

Mr. Richard H. Stanley
Vice-Chair

Mr. J. William Charrier
Vice-Chair

Advisory Board Chairs
Dr. Peter Schlosser
Chair

Deborah K. Steinberg, PhD
Vice-Chair

Advisory Board
Greg Asner, PhD
Kenneth H. Brink, PhD
Colin Brown
Charles F. A. Cooper
Jim Galloway, PhD
Linda K. Glover
Dennis Hansell
Brian M. O’Hara
Capt. John Moore
Jonathan Reiss
Ryan Robinson
The Honorable Gerald D.E. Simons, OBE
Burton H. Singer, PhD
Lady (Judy) Vereker
Martin Visbeck, PhD
Douglas Wallace, PhD

Honorary Chancellor
H.E. Ms. Rena Lalgie

Trustee Emeritus
Michael A Butt
Robert E. Cawthorn
Brian Duperreault
John Farrington, PhD
Idwal Wyn Hughes, PhD

Life Trustees
Neil R. Andersen, PhD
Foster Bam
James Burnett-Herkes, PhD
Cindy Lee, PhD
The Hon. Terry Lister, JP, MP

Frederick T. Mackenzie, PhD
Wendell M. Smith
Robert T. Sperring
Frank Sprow, PhD
Richard D. Spurling
Sir John Swan
William H. Williams
David B. Wingate, PhD, OBE

Trustees
Patrick Barlow
Graham B.R. Collis
Catherine Duffy
Richard J. Ferrett
Mark Guishard, PhD
Michael Hamer, PhD
Kenro Kusumi, PhD
Ms Lisa Loo
Alan McGowan
Morgan R. Olsen, PhD
Ralph E. Richardson
Peter Schlosser, PhD
Michael Schrum
James N. Stanard, PhD
Bess B. Ward, PhD
Anthony Williams

Frederick T. Mackenzie, PhD
Wendell M. Smith
Robert T. Sperring
Frank Sprow, PhD
Richard D. Spurling
Sir John Swan
William H. Williams
David B. Wingate, PhD, OBE

Honorary Chancellor
H.E. Ms. Rena Lalgie

Board of Trustees
16
Bermuda Institute of Ocean Sciences Annual Report

bios.asu.edu
Faculty & Staff

Research
Roderick Bakker
Research Technician

Jonny Chapman
Research Technician

Julius Christopher Barsi, PhD
Assistant Scientist

Nicholas R. Bates, PhD
Senior Scientist and
Associate Director of Research

Leocadio Blanco-Bercial, PhD
Assistant Scientist

Maureen H. Conte, PhD
Associate Scientist

Ruth Curry
Glider Program Manager

Samantha de Putron, PhD
Senior Lecturer and Associate
Scientist

Lucinda Derbyshire
Research Technician

Matt Enright
Research Specialist

Rebecca Garley
Research Specialist

Jessica Godfrey
Research Technician

Hannah Gossner
Research Technician

Damian Grundle, PhD
Assistant Scientist

Ali Hochberg
Research Technician

Eric J. Hochberg, PhD
Associate Scientist

Brett Jameson
Postdoctoral Scientist

Rodney J. Johnson, PhD
Assistant Scientist

Amy Maas, PhD
Assistant Scientist

Rebecca May
Research Technician

Claire Medley
Research Technician

Sheryl Murdock, PhD
Postdoctoral Researcher

Tim Noyes
Research Specialist

Rachel J. Parsons
Microbial Observatory Lab
Manager

Andrew J. Peters, PhD
Associate Scientist

Yvonne Sawall, PhD
Research Fellow

Dom Smith
Research Technician

Kevin Yongblah
Research Technician

Adjunct Faculty
Andreas J. Andersson, PhD
Scripps Institution of Oceanography

Craig Carlson, PhD
University of California, Santa
Barbara

Steven Giovannoni, PhD
Oregon State University

Gretchen Goodbody-Gringley,
PhD
Assistant Scientist

Michael W. Lomas, PhD
Bigelow Laboratory for Ocean
Sciences

Christa Marandino
Asst Prof, GEOMAR
Helmholtz
Centre for Ocean Research
Kiel

Philippe Rouja, PhD
Custodian of Historic Wrecks,
Bermuda Government

Samia Sarkis, PhD
Senior Marine Researcher,
Department of Conservation
Services

Struan R. Smith, PhD
Bermuda Natural History
Museum

Hans Christian Steen-Larsen,
PhD
Researcher, Geophysical Insti-
tute, University of Bergen

Deborah Steinberg, PhD
Virginia Institute of Marine
Science

Simon J. Ussher, PhD
Plymouth University
Scientific Technical Staff

Education
Samantha de Putron, PhD
Assistant Director of University
Programs and Senior Lecturer

Kaitlin M. Noyes
Director of Education and
Community Engagement

Andrew Peters, PhD
Director of University
Programs & Associate Scientist

Audrey Pope
University Programs Internship
Coordinator, Communications
and Data Manager

Claire Fox
Science Education Officer

Marine Operations
Captain & Marine
Superintendent
Murray Stein

Captain
George Gunther
Patrick Redmond

Port Captain
Richard Verlini, III

Marine Operations Coordinator
Deborah Moran

Marine Consultant (Volunteer)
Captain John Moore
Faculty & Staff

Oceanographic Technical Services Manager
Rory O’Connell

Senior Marine Technician
Lydia Sgorousl

Marine Technician
Oban Jones

Marine Technician
Emily Tate

R/V Atlantic Explorer
Relief Chief Mate
Emily Jarris
Elijah Herrman (now resigned)
Richard Chase (one rotation only)

Relief Second Mate
Jack Cano
Cleo Reed (one rotation only)

Relief Chief Engineer
Jens (Mike) Kierkegaard
Eric Hahn

R/V Atlantic Explorer
Crew, Bernhard Schulte Ship-Management Co
Relief Second Mate
Joegr Yu

Cook
Dexer Ojano

Cook
Carlos Calayo

Cook
Riggie Sanqui

Bosun
Jojo Paitone

Bosun
Ronnie De Leon

Motorman 1
Berlin Jamelo

Motorman 1
Rodney Jumeras

Motorman 1
Al Soliva

Able Seaman
Jhun Mutas

Able Seaman
Raymund Laureano

Able Seaman
Joven De Guzman

Ordinary Seaman
Henderson Cabading

UNOLS Tech Pool
Gabe Matthias
Patrick A’Hearn
Joe McCabe
George Aukon
Cambria Berger
Ben Duncan

Operations
Jane Burrows
Accommodation and Catering Manager

Tracey Byron
Human Resources Generalist

Chris Flock
Small Boats and Docks Supervisor

Ruth M. Heron-Watts
Accountant

Gillian Hollis
Assistant to the President & CEO and Secretary to the Board of Trustees

Kevin Hollis
Facilities Manager and Safety Officer

Malika Hughey
Accounting Assistant

Mukesh Kumar
Head Chef

Michael Lee
IT Manager

Charlene Millett
Kitchen Assistant

Victoria Millett, CPA
CPA Treasurer and Controller

Donika O’Mara
Office/Room Attendant

Jahlae Outerbridge
Financial Accountant

Carol Pitcher
Office/Room Attendant

Helena Simoes
Chef

Kyla Smith
Dive Safety Officer

Antar Smith
Network and Systems Administrator

Kenneth Trott
Truck/Bus Driver

LeeAnn Tuzo
Accounts Payable Clerk

Gregory Wade
General Maintenance

William Welton
Chief Financial and Operating Officer

Georgianna White
Laboratory Attendant

Bruce Williams
Laboratory Operations Technician

Kwe’shon Woods-Hollis
Small Boats, Docks Supervisor

Advancement, Marketing, and Communications
Pam Amaral
Development Officer

Ali Hochberg
Science Writer and Webmaster

Tiffany Wardman
Marketing and Communications

Bermuda Institute of Ocean Sciences Annual Report
Be in the know on ocean information by signing up to our *Currents* newsletter at currents@bios.asu.edu